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Abstract

The graphs of groups is a powerful tool for studying finite groups as it visually represents their
structures and relationships. In general, introducing new graphs of groups leads to discover-
ies about the graphs’ characteristics, offering significant insights into its structure, connectivity,
and spectral aspects. This paper investigates various characteristics of a newly introduced graph
called the enhanced power coprime graph of some finite groups. The enhanced power coprime
graph of a finite group,G is defined as a graphwith elements ofG as vertices, where two distinct
vertices x and y are adjacent if they generate a proper cyclic subgroup ofG and gcd(|x|, |y|) = 1.
First, we establish the general presentations of the enhanced power coprime graph for all semi-
dihedral groups of order 2n and prime power cases of dihedral and generalized quaternion
groups. These presentations facilitate the determination of various characteristics, including
vertex degrees, clique numbers, chromatic numbers, independence numbers, domination num-
bers, girth, diameter, graph classification, and the Laplacian spectrum. The results reveal that
the enhanced power coprime graphs of the mentioned groups are connected, planar, and per-
fect, with consistent characteristics for those with similar presentations. These findings have
applications in computational group theory, network analysis, and coding theory, using graph
characteristics to explore group structures.
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1 Introduction

The study of finite groups, central to understanding symmetry and transformation, has been a
fundamental aspect of algebra for over a century [10]. The graphs of finite groups reveal complex
interactions within group structures. Their characteristics, such as invariants, classifications, and
spectral properties, provide deep insights into group connectivity. Researchers have leveraged
these graph presentations to uncover properties with applications in computational group theory,
network analysis, and coding theory. Numerous studies have explored various types of graphs
of groups, presenting group theory through the lens of graph theory. For instance, Bera [6] in-
troduced the intersection power graph, suggesting that new graphs can be defined on algebraic
structures by studying the poset of suitable substructures.

Recently, Bello et al. [5] introduced the commuting order product prime graph, which is a
variation of the commuting graph and order product prime graph. After that, Cameron and
Kuzma [12] introduced the deep commuting graph, equivalent to a subgraph of the enhanced
power graph and the transitive closure of the commuting graph. Mohamed et al. [19] introduced
the cyclic order product prime graph to study the variation between cyclic graph and the order
product prime graph. These developments have sparked interest in new intersection graphs, par-
ticularly enhanced power and coprime graphs. Let G be a finite group with identity e. The en-
hanced power graph, Γep(G), is a graph where two distinct vertices x and y are adjacent if ⟨x, y⟩ is
a cyclic subgroup of G. It is important to note that Γep(G) lies between the power graph and the
commuting graph [1]. Additionally, Γep(G) can also be derived from the directed power graph
by connecting two vertices if they both exist in the closed-out neighborhood of a certain vertex
[12]. In contrast, the coprime graph, Γc(G), captures relationships between elements whose or-
ders are relatively prime, where two distinct vertices x and y are connected by an edge if and only
if gcd(|x|, |y|) = 1 [14].

Considerable attention has been given to the study of the characteristics of enhanced power
graphs. For example, Bera and Bhuniya [7] classified the enhanced power graphs into three dis-
tinct categories: complete graphs, Eulerian graphs, and graphs that can be dominated under cer-
tain conditions. Furthermore, Panda et al. [21] and Dalal and Kumar [13] have studied various
graph invariants of these graphs, including the chromatic number, independence number, min-
imum degree, matching number, metric dimension, and covering number, focusing on specific
groups selected for analysis. In addition, Bera et al. [8] examined the connectivity of vertices
in Γep(G). Related surveys and open problems concerning this graph have also been addressed
by Ma et al. [18] and Dupont et al. [15]. Recently, Parveen et al. [22] investigated the Laplacian
spectrumof this graph, presenting results for semi-dihedral, dihedral, and generalized quaternion
groups.

Apart from that, Ma et al. [17] explored the coprime graph and analyzed how its theoretical
features influence the properties of the group. Dorbidi [14] classified all groups forwhich Γc(G) is
a complete r-partite graph or a planar graph. The basic properties of Γc(G)were also discussed by
Selvakumar and Subajini [26]. Banerjee [3] investigated the Laplacian spectrum of Γc(G) for finite
cyclic and dihedral groups. Sehgal et al. [25] and Adhikari and Banerjee [2] extended the study
to coprime order graphs (an extension of coprime graphs), determining the Laplacian spectra for
certain cases of finite groups. Recently, Nurhabibah et al. [20] discovered numerical invariants
of the coprime graph for generalized quaternion groups. A comparison of the aforementioned
graphs, focusing on their distinctive characteristics that provide crucial insights into their unique
aspects, can be found in Cameron [11].

Despite extensive research on the enhanced power graph and coprime graph, their combined
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structural insights remain largely unexplored. This paper introduces the enhanced power co-
prime graph, which integrates properties of both to analyze group structures with specific gener-
ating patterns and ordering properties. By focusing on the semi-dihedral groups of order 2n and
prime power cases of dihedral and generalized quaternion groups, we establish their general pre-
sentations, which are crucial for understanding graph connectivity. These presentations support
structural analysis, as demonstrated in the commuting decompositions by Bhat and Sudhakara
[9] and the connectivity classifications by Bello et al. [4], forming a foundation for proving key
graph properties.

2 Background of Theory and Preliminaries

This section provides the background of the related theory and some preliminary research.
The focus of this research is on certain finite groupsG, including the dihedral groups of order 2n,

Dn = ⟨a, b | an = b2 = (ab)2 = e, bab−1 = a−1⟩, where n ≥ 3,

the semi-dihedral groups of order 2n,

SD2n = ⟨a, b | a2
n−1

= b2 = e, ba = a2
n−2−1b⟩, where n ≥ 4,

and the generalized quaternion groups of order 4n,

Q4n = ⟨a, b | a2n = b4 = e, bab−1 = a−1, an = b2⟩, where n ≥ 2.

Here, e refers to the identity element of G, and |a| denotes the order of an element a. Note that in
these groups, ⟨a⟩ is isomorphic to a cyclic group. Thus, we can represent these groups using their
cyclic subgroups and other additional subsets of G as follows,

1. Dn = ⟨a⟩ ∪ {aib | 0 ≤ i < n}, where ⟨a⟩ = {e, a, . . . , an−1}.

2. SD2n = ⟨a⟩∪{a2jb | 0 ≤ j < 2n−2}∪{a2j+1b | 0 ≤ j < 2n−2}, where ⟨a⟩ = {e, a, . . . , a2n−1−1}.

3. Q4n = ⟨a⟩ ∪ {akb | 0 ≤ k < 2n}, where ⟨a⟩ = {e, a, . . . , a2n−1}.

In this study, all graphs are simple and undirected. A graph Γ is represented by the sets of
vertices V and edges E. The relationship between two vertices v1 and v2 in Γ is indicated by
v1 ∼ v2. A leaf vertex is a vertex with degree 1, which is connected to exactly one other vertex
in Γ. A star graph is a tree with one central vertex connected to all other vertices, which are leaf
vertices. The graph Γ is connected if there is a path between any two vertices, and a complete
graphKn is one in which every pair of vertices is connected by an edge. The graph Γ is regular if
all vertices have the same degree. A graphΓ is planar if it can be represented on a two-dimensional
plane without any edges intersecting, except at the vertices where they are incident. A graph Γ is
perfect if the chromatic number of every induced subgraph equals the size of its largest clique. For
subgraphs Γ1 = (V1, E1) and Γ2 = (V2, E2), the disjoint union Γ1 ∪ Γ2 forms a graph with vertex
set V1 ∪ V2 and edge set E1 ∪ E2, where V1 and V2 are disjoint. The join of Γ1 and Γ2, denoted as
Γ1 + Γ2, is obtained by adding edges between all vertices of Γ1 and Γ2.

Graph invariants are essential for analyzing graph structures, including vertex degree, clique
number, chromatic number, independence number, domination number, girth, and diameter. In
a graph Γ, the degree of a vertex v, deg(v), represents the number of edges incident to it. The
clique number, ω(Γ), is the size of the largest complete subgraph in Γ. The chromatic number,
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χ(Γ), signifies the minimum number of colors required to color Γ so that no two adjacent vertices
share the same color. The independence number, α(Γ), is the size of the largest set of mutually
non-adjacent vertices, while the domination number, γ(Γ), is the size of the smallest set of vertices
such that every other vertex is adjacent to at least one vertex in this set. The girth is the length of
the shortest cycle in Γ; if Γ has no cycles, its girth is infinite. The eccentricity of a vertex v, ecc(v), is
the greatest distance from v to any other vertex in Γ. The diameter of Γ, diam(Γ), is the maximum
eccentricity among all vertices in Γ. All the graph information given can be found in [16, 27].
Throughout this paper, we assume ⟨x, y⟩ = ⟨y, x⟩ for all x, y ∈ G.

The Laplacian matrix of Γ, L(Γ), is a symmetric and positive semi-definite matrix representa-
tion of Γwith real and non-negative eigenvalues. It is defined as L(Γ) = D(Γ)−A(Γ), whereD(Γ)
is a diagonal matrix containing the degrees of Γ, and A(Γ) is the adjacency matrix of Γ with en-
tries such that if the vertices vi and vj are adjacent, the entry is 1; otherwise, it is 0. An interesting
property of L(Γ) is that the sum of its rows (or columns) is always zero, which means the matrix
is singular. As a result, its smallest eigenvalue is always 0. The characteristic polynomial of L(Γ),
Θ(L(Γ)), is defined as det(ρI − L(Γ)), where ρ is a scalar and I is the identity matrix. This poly-
nomial captures the Laplacian spectrum of Γ, Lspec(Γ), which provides insights into the algebraic
and topological properties of the underlying groups. Listing the unique Laplacian eigenvalues of
Γ in descending order as ρn1

(Γ) ≥ ρn2
(Γ) ≥ · · · ≥ ρnr

(Γ) = 0, with their respective multiplicities
m1,m2, . . . ,mr, the Laplacian spectrum is given by,

Lspec(Γ) = {(ρn1
(Γ))m1 , (ρn2

(Γ))m2 , . . . , (ρnr
(Γ))mr}. (1)

Related spectral analysis byRomdhini et al. [23] using the neighbors degree summatrix highlights
how eigenvalue-based methods can reveal structural properties of group-based graphs.

Some preliminary results that provide important information on the connectivity and adja-
cency of the related graphs are listed below.

Lemma 2.1. [7] Let c, d ∈ G, and letGen(c) andGen(d) be the sets of all generators of the cyclic subgroups
⟨c⟩ and ⟨d⟩ of G, respectively. If |c| = |d| and ⟨c⟩ ̸= ⟨d⟩, then x is not adjacent to y for all x ∈ Gen(c) and
y ∈ Gen(d).

Remark 2.1. Let G be a finite group. If e is the identity element of G, then for all y ∈ G \ {e},

⟨e, y⟩ = ⟨y, e⟩ = ⟨y⟩.

Theorem 2.1. [24] Let SD2n be the semi-dihedral group of order 2n. For any integer j with 0 ≤ j < 2n−1,

1. |aj | = 2n−1

gcd(j, 2n−1)
,

2. |ajb| = 2 when j is even, and |ajb| = 4 when j is odd.

Theorem 2.2. [26] LetG be a finite group. Then Γc(G) is a tree if and only ifG is isomorphic to a p-group.

Proposition 2.1. [19] Let SD2n be the semi-dihedral group of order 2n. For all x, y ∈ G, ⟨x, y⟩ is equal
to a proper cyclic subgroup of G if,

1. x, y ∈ ⟨a⟩,

2. x = e and y = ajb, where 0 ≤ j < 2n−1,

3. x = a2
n−2 and y = a2j+1b, where 0 ≤ j < 2n−2,

4. x = a2j+1b and y = aj+2n−2

b, where 0 ≤ j < 2n−2.
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3 Main Results

This section introduces the enhanced power coprime graphs and establishes general presen-
tations for certain finite groups. It also provides essential information about various graph in-
variants, including vertex degrees, clique numbers, chromatic numbers, independence numbers,
domination numbers, girth, diameter, classifications of the defined graphs of groups, and findings
related to the Laplacian spectrum. These details are derived from the established general presen-
tations. The results comprehensively describe the structure of the enhanced power coprime graph,
offering potential new concepts in group theory and graph theory.

3.1 General presentations of the defined graphs of groups

Before proving the general presentations, the enhanced power coprime graph of groups is
introduced, along with an example of the visualization of the defined graph.

Definition 3.1. Let G be a finite group with identity e, and let x and y be two distinct vertices of G. The
enhanced power coprime graph, Γepc(G), is the graph where x and y are adjacent if and only if ⟨x, y⟩ is a
proper cyclic subgroup of G and gcd(|x|, |y|) = 1.

Example 3.1. Let G be either the dihedral group of order 8, D4, or the semidihedral group of order 16,
SD16. In Γepc(G), adjacency occurs only between the identity element e and y ∈ G \ {e}, as ⟨e, y⟩ = ⟨y⟩
and gcd(|e|, |y|) = 1. Figures 1 and 2 illustrate these graphs for D4 and SD16, respectively.

Figure 1: The enhanced power coprime graph ofD4.
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Figure 2: The enhanced power coprime graph of SD16.

Example 3.2. Let G be the generalized quaternion group of order 12, Q12 = ⟨a⟩ ∪ {akb | 0 ≤ k < 6},
where ⟨a⟩ = {e, a, a2, . . . , a5}. For all y ∈ Q12 \ {e}, ⟨e, y⟩ = ⟨y⟩ and gcd(|e|, |y|) = 1. Additionally,
⟨a2, a3⟩ = ⟨a3, a4⟩ = ⟨a⟩, and gcd(|a2|, |a3|) = gcd(|a3|, |a4|) = 1. Therefore, the graph Γepc(Q12) can
be represented as shown in Figure 3 and expressed as Γepc(Q12) = K1 + (K8 ∪K1,2).

Figure 3: The enhanced power coprime graph ofQ12.

Adjacency information and element orders are also provided to support the proof of the gen-
eral presentation of the enhanced power coprime graph for dihedral, semi-dihedral, and general-
ized quaternion groups.

Proposition 3.1. Consider G as one of the groups Dn, SD2n , or Q4n. For all am1 , am2 , am3 ∈ G, where

0 ≤ m1,m2,m3 <
|G|
2

and are isomorphic to the rotation elements, ⟨am1 , am2⟩ = ⟨am3⟩ if and only if
m1 ̸= m2 and gcd(m1,m2) = m3.
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Proof. Consider G as one of the groups Dn, SD2n , or Q4n. Let am1 , am2 , am3 ∈ G, where

0 ≤ m1,m2,m3 <
|G|
2

and are isomorphic to the rotation elements in ⟨a⟩ ⊂ G. If m1 ̸= m2 and
gcd(m1,m2) = m3, where m3 can be equal to m1 or m2, it follows that m3 divides both m1 and
m2. Now, am1 = (am3)

m1
m3 and am2 = (am3)

m2
m3 , which implies that am1 and am2 are powers of

am3 . Hence, ⟨am1 , am2⟩ is the subgroup generated by am1 and am2 , which is contained within
⟨am3⟩. Additionally, ⟨am3⟩ is a cyclic subgroup and contains both am1 and am2 because they are
powers of am3 . Since ⟨am1 , am2⟩ is contained in ⟨am3⟩ and ⟨am3⟩ contains ⟨am1 , am2⟩, it follows
that ⟨am1 , am2⟩ = ⟨am3⟩.

Proposition 3.2. Let Dn be the dihedral group of order 2n. For all integers i with 0 ≤ i < n,
|ai| = n

gcd(i, n) and |aib| = 2.

Proof. Suppose Dn = ⟨a⟩ ∪ {aib | 0 ≤ i < n}, where ⟨a⟩ = {e, a, a2, . . . , an−1}. Since ai ∈ ⟨a⟩,
we have |ai| = n

gcd(i, n)
according to the basic properties of the cyclic groups. Also, due to the

relations b2 = e and ba = a−1b in Dn, |aib| = 2.

Proposition 3.3. Let Dn be the dihedral group of order 2n. For all x, y ∈ Dn, ⟨x, y⟩ is equal to a proper
cyclic subgroup of G if,

1. x, y ∈ ⟨a⟩,

2. x = e and y = aib,

where 0 ≤ i < n.

Proof. The result follows directly from Lemma 2.1, Remark 2.1, Propositions 3.1 and 3.2.

Proposition 3.4. Let Q4n be the generalized quaternion group of order 4n. For all integers k with
0 ≤ k < 2n, |ak| = 2n

gcd(k, 2n) and |akb| = 4.

Proof. Suppose Q4n = ⟨a⟩ ∪ {akb | 0 ≤ k < 2n}, where ⟨a⟩ = {e, a, a2, . . . , a2n−1}. Using the

basic properties of cyclic groups, |ak| = 2n

gcd(k, 2n)
for all ak ∈ ⟨a⟩. Also, by the definition of

Q4n, |akb| = 4, due to the specific properties of the group.

Proposition 3.5. Let Q4n be the generalized quaternion group of order 4n. For all x, y ∈ Q4n, ⟨x, y⟩ is
equal to a proper cyclic subgroup of G if,

1. x, y ∈ ⟨a⟩,

2. x = e and y = akb,

3. x = an and y = akb,

4. x = akb and y = ak+nb,

where 0 ≤ k < 2n.

Proof. The result follows directly from Lemma 2.1, Remark 2.1, Propositions 3.1 and 3.4.
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Proposition 3.6. Consider G as one of the groups Dn, SD2n , or Q4n. For all x, y ∈ G, gcd(|x|, |y|) = 1
if and only if,

1. either |x| = 1 or |y| = 1,

2. |x| = gr and |y| = hs, where g, h are distinct prime powers and r, s ∈ N.

Proof. From Theorems 2.1 and 2.2, together with Propositions 3.2 and 3.4, it follows that if |x| = 1
or |y| = 1, and |x| = gr and |y| = hs, where g, h are distinct prime powers and r, s ∈ N, then
gcd(|1|, |y|) = gcd(|x|, |1|) = gcd(|gr|, |hs|) = 1. Otherwise, gcd(|x|, |y|) ̸= 1.

Proposition 3.7. LetG be one of the groupsDn, SD2n , orQ4n. For all x, y ∈ G, ⟨x, y⟩ generates a proper
cyclic subgroup of G and gcd(|x|, |y|) = 1 if and only if,

1. x, y ∈ ⟨a⟩, where |x| and |y| are distinct prime powers.

2. x is the identity element e, and y ∈ G \ {e}.

Proof. Clearly, from Propositions 2.1, 3.3, 3.5, and 3.6, the result follows.

The general presentations of the enhanced power coprime graph for certain cases of the men-
tioned groups are given in Theorems 3.1 and 3.2.

Theorem 3.1. Let G be one of the groups Dn for n = pt, where p is a prime number and t ∈ N, or SD2n .
Then, Γepc(G) = K1,|G|−1.

Proof. From Proposition 3.7, it follows that for n = pt, where p is a prime number and t ∈ N,
⟨x, y⟩ generates a proper cyclic subgroup of G and gcd(|x|, |y|) = 1 if x = e and y ∈ G \ {e}. For
all x, y ∈ ⟨a⟩, |x| = gr and |y| = gs, where gr, gs are powers of the same prime with different
exponents r, s ∈ N. Therefore, Γepc(G) = K|e|,|G\{e}| = K1,|G|−1. This presentation corresponds
to a star graph, where the central vertex e connects to all other vertices.

Theorem 3.2. Let Q4n be the generalized quaternion group of order 4n, where n ≥ 2. Then, for n = pt,
where p is a prime number and t ∈ N,

Γepc(Q4n) =

K1,4n−1, if p = 2,

K1 + (K3n−1 ∪K1,n−1), if p ̸= 2.

Proof. Let Q4n = ⟨a⟩ ∪ {akb | 0 ≤ k < 2n}, where ⟨a⟩ = {e, a, a2, . . . , a2n−1}, and let n = pt, where
p is a prime number and t ∈ N. Using Proposition 3.7, two cases need to be considered:

Case 1: If p = 2, the order of each element is 2w, where w ∈ N, for all x, y ∈ Q4n \ {e}, and
gcd(|x|, |y|) ̸= 1. Thus, x ∼ y only if x = e and y ∈ Q4n \ {e}. Therefore,

Γepc(Q4n) = K|e|,|Q4n\{e}| = K1,4n−1,

which corresponds to a star graph.
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Case 2: If p ̸= 2, Γepc(Q4n) = K|e| + (KJ ∪ KM ), where J is the set of isolated vertices in the

graph, andM is the set of vertices decomposed into two disjoint sets, an and
n−1⋃
k=1

{a2k},

for all k ∈ N, where gcd(|x|, |y|) = 1. Hence,

Γepc(Q4n) = K1 + (K3n−1 ∪K1,n−1).

3.2 Some characteristics of the graphs of groups

First, the vertex degrees of Γepc(G) in specific cases of dihedral groups, semi-dihedral groups,
and generalized quaternion groups are presented in Proposition 3.8.

Proposition 3.8. Let Γepc(G) be the enhanced power coprime graph of a finite group G, where G is SD2n

or the prime power cases of Dn and Q4n. For all 0 ≤ m <
|G|
2

,

1. degΓepc(G)(e) = |G| − 1,

2. degΓepc(G)(a
m) =


n, if m = n, where n = pt, p ̸= 2 in Q4n,

2, if m = 2µ, where µ < n, for n = pt, p ̸= 2 in Q4n,

1, otherwise,

3. degΓepc(G)(a
mb) = 1,

where p is a prime number, and t, µ ∈ N.

Proof. Let Γepc(G) be the enhanced power coprime graph of a finite group G, where G is SD2n or
the prime power cases of Dn and Q4n. From Theorems 3.1 and 3.2, it is clear that e ∈ V (Γepc(G))
is the central vertex always connected to all other vertices. Therefore, degΓepc(G)(e) = |G| − 1. For
Q4n, where n = pt, p ̸= 2, and t ∈ N, Γepc(G) = K1 + (K3n−1 ∪K1,n−1).

For all am ∈ V (K3n−1 ∪K1,n−1), two cases need to be considered:

Case 1: Ifm = n, then an is connected to e and
n−1⋃
m=1

{a2m}, wherem ∈ N and gcd(x, y) = 1.

Hence, degΓepc(G)(a
m) = n.

Case 2: Ifm = 2µ, where µ < n and µ ∈ N, a2µ is connected to an and e.
Therefore, degΓepc(G)(a

m) = 2.

Otherwise, degΓepc(G)(x) = 1, since x ∈ V (Γepc(G)) is only connected to the central vertex e,
including all amb ∈ G.

In the following, Propositions 3.9 and 3.10 provide the results for the clique number, the chro-
matic number, the independence number, the domination number, the girth, and the diameter of
the enhanced power coprime graph for certain cases of thementioned groups, offering a thorough
understanding of their relationships.
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Proposition 3.9. Let Γepc(G) be the enhanced power coprime graph of the group G, where G is one of the
groups Dn if n = pt, SD2n for all n, or Q4n if n = 2t, where p is a prime number and t ∈ N. Then,

1. ω(Γepc(G)) = χ(Γepc(G)) = diam(Γepc(G)) = 2,

2. α(Γepc(G)) = |G| − 1,

3. γ(Γepc(G)) = 1,

4. girth(Γepc(G)) = ∞.

Proof. From Theorems 3.1 and 3.2, it is clear that Γepc(G) = K1,|G|−1, whereG is one of the groups
Dn if n = pt, SD2n for all n, or Q4n if n = 2t, where p is a prime number and t ∈ N. The graph
invariants can be proved as follows,

1. The central vertex and any single leaf vertex form the largest complete subgraph inK1,|G|−1,
requiring only two colors for proper vertex coloring. Therefore,

ω(Γepc(G)) = χ(Γepc(G)) = 2.

Additionally, the maximum shortest distance between any two leaf vertices is 2, as it passes
through the central vertex. Thus, diam(Γepc(G)) = 2.

2. The largest independent set consists of the leaf vertices. Thus, α(Γepc(G)) = |G| − 1.

3. All vertices in the graph V (K1,|G|−1) are directly connected to the central vertex. Hence, the
smallest dominating set consists of only the central vertex, and γ(Γepc(G)) = 1.

4. Since Γepc(G) = K1,|G|−1 has no cycles, its girth is infinite.

Proposition 3.10. Consider Γepc(Q4n) as the enhanced power coprime graph of the generalized quaternion
group. Let p be a prime number with p ̸= 2 and n = pt where t ∈ N. Then,

1. ω(Γepc(Q4n)) = χ(Γepc(Q4n)) = girth(Γepc(Q4n)) = 3,

2. diam(Γepc(Q4n)) = 2,

3. α(Γepc(Q4n)) = 4n− 2,

4. γ(Γepc(Q4n)) = 1.

Proof. From Theorem 3.2, we have Γepc(Q4n) = K1 + (K3n−1 ∪K1,n−1) for n = pt with p ̸= 2 and
t ∈ N. Now,

1. The join operation K1 + K1,n−1 forms a maximum complete subgraph K3 using the ver-
tex v ∈ K1 and two vertices from K1,n−1. Therefore, ω(Γepc(Q4n)) = 3. Additionally,
since the maximum component can be colored with three colors, the chromatic number
χ(Γepc(Q4n)) = 3. The presence of a triangle in the subgraph K3 implies that the small-
est cycle length is 3. Hence, girth(Γepc(Q4n)) = 3.

2. Let v ∈ V (K1), w ∈ V (K3n−1), and z ∈ V (K1,n−1). Since v ∼ w and v ∼ z, but w ≁ z, we
have ecc(v) = 1 and ecc(w) = ecc(z) = 2. Thus, the maximum shortest distance between
any two vertices involves w and z, passing through v, so diam(Γepc(Q4n)) = 2.
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3. Let A = {q1, q2, . . . , q3n−1} represent the vertices of K3n−1, and B = {s, u1, u2, . . . , un−1}
represent the vertices of K1,n−1. The set A is independent, as there are no edges among its
vertices, and B \ {s} forms another independent set. Combining these sets,

{q1, q2, . . . , q3n−1, u1, u2, . . . , un−1},

gives the maximum independent set. Hence,

α(Γepc(Q4n)) = |A|+ |B \ {s}| = (3n− 1) + (n− 1) = 4n− 2.

4. The vertex v ∈ K1 dominates every other vertex in Γepc(Q4n), as it is adjacent to all ver-
tices in V (K3n−1) ∪ V (K1,n−1). Hence, the set {v} forms a dominating set of size 1, and
γ(Γepc(Q4n)) = 1.

The classifications of the enhanced power coprime graph in terms of connectivity, complete-
ness, regularity, planarity, and perfectness for dihedral groups, semi-dihedral groups, and gener-
alized quaternion groups are presented in Proposition 3.11.

Proposition 3.11. Let G be one of the groups SD2n for all n, Dn, or Q4n, where n = pt, p is a prime
number, and t ∈ N. Then, Γepc(G) is connected, planar, and perfect, but it is neither a complete nor a
regular graph.

Proof. From Theorems 3.1 and 3.2, Γepc(G) is connected because every vertex is connected to the
central vertex, ensuring a path between any pair of vertices. Also, the central vertex can be placed
in the center, with all other vertices surrounding it and connected by non-crossing edges; therefore,
Γepc(G) is planar.

From Propositions 3.9 and 3.10, the largest clique size is 2, and the chromatic number is also 2,
which means it can be colored with two colors. Every induced subgraph maintains this property,
which confirms that Γepc(G) is a perfect graph. Finally, as shown in Proposition 3.8, the central
vertex has a degree of |G| − 1, while other vertices have varying degrees. Since some vertices
are not adjacent to all others and the degrees are not uniform, Γepc(G) is neither complete nor
regular.

The results related to the Laplacian spectrum are then explained. Using the general presen-
tation of Γepc(G), the Laplacian matrix is constructed. Then, the characteristic polynomial of the
Laplacian matrix and the Laplacian spectrum of Γepc(G) are derived.

Theorem 3.3. LetDn be the dihedral group of order 2n, where n = pt and n ≥ 3. Then, the characteristic
polynomial,

Θ(Γepc(Dn)) = ρ(ρ− 2n)(ρ− 1)2(n−1),

and the Laplacian spectrum,

Lspec(Γ
epc(Dn)) = {2n, 12n−2, 0}.
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Proof. From Theorem 3.1, the Laplacian matrix L(Γepc(Dn)) is a 2n × 2n matrix where the rows
and columns are indexed by the elements of the dihedral group Dn of order 2n, with n = pt and
n ≥ 3. The matrix is given by,

L(Γepc(Dn)) =

(
2n− 1 −11×(2n−1)

−1(2n−1)×1 I(2n−1)×(2n−1)

)
.

The characteristic polynomial is

Θ(L(Γepc(Dn))) =

∣∣∣∣ρ− (2n− 1) 11×(2n−1)

1(2n−1)×1 (ρ− 1)I(2n−1)×(2n−1)

∣∣∣∣ .
Using elementary row operations R1 → (ρ− 1)R1 − (R2 +R3 + . . .+R2n), we obtain

Θ(L(Γepc(Dn))) =
(ρ− (2n− 1))(ρ− 1)− (2n− 1)

ρ− 1
· |(ρ− 1)I(2n−1)×(2n−1)|.

Simplifying, we get

Θ(L(Γepc(Dn))) = ρ(ρ− 1)2n−2(ρ− 2n).

From (1), the Laplacian spectrum isLspec(Γ
epc(Dn)) = {2n, 12n−2, 0} for all n = pt with n ≥ 3.

By following the same steps as in the proof of Theorem 3.3, the Laplacian spectrum results for
other cases involving the star graph, as shown inTheorems 3.1 and 3.2, are also valid. Furthermore,
forQ4n, when n = pt with p ̸= 2 and t ∈ N, the Laplacian spectrum result is presented in Theorem
3.4.

Proposition 3.12. Let SD2n be the semi-dihedral group of order 2n, where n ≥ 4. Then, the characteristic
polynomial is

Θ(Γepc(SD2n)) = ρ(ρ− 2n)(ρ− 1)2
n−2,

and the Laplacian spectrum is

Lspec(Γ
epc(SD2n)) = {2n, 12

n−2, 0}.

Proposition 3.13. LetQ4n be the generalized quaternion group of order 4n, where n ≥ 2 and n = 2t with
t ∈ N. Then, the characteristic polynomial is

Θ(Γepc(Q4n)) = ρ(ρ− 4n)(ρ− 1)4n−2,

and the Laplacian spectrum is

Lspec(Γ
epc(Q4n)) = {4n, 14n−2, 0}.

Theorem 3.4. LetQ4n be the generalized quaternion group of order 4n for n ≥ 2 where n = pt with p ̸= 2
and t ∈ N. The characteristic polynomial,

Θ(Γepc(Q4n)) = ρ(ρ− 1)3n−1(ρ− 2)n−2(ρ− (n+ 1))(ρ− 4n),

and the Laplacian spectrum of

Γepc(Q4n) = {4n, n+ 1, 2n−2, 13n−1, 0}.
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Proof. The Laplacian matrix of Γepc(Q4n), denoted as L(Γepc(Q4n)), is a 4n× 4nmatrix. The rows
and columns are ordered according to their degree of the vertices for the generalized quaternion
group of order 4n, Q4n, for n ≥ 2where n = pt, p ̸= 2, and t ∈ N,

L(Γepc(Q4n)) =


4n− 1 −1 −11×n−1 −11×3n−1

−1 n −11×n−1 01×3n−1

−1n−1×1 −1n−1×1 2In−1×n−1 0n−1×3n−1

−13n−1×1 03n−1×1 03n−1×n−1 I3n−1×3n−1

 ,

Then, the characteristic polynomial

Θ(L(Γepc(Q4n))) =

∣∣∣∣∣∣∣∣
ρ− (4n− 1) 1 11×n−1 11×3n−1

1 ρ− n 11×n−1 01×3n−1

1n−1×1 1n−1×1 (ρ− 2)In−1×n−1 0n−1×3n−1

13n−1×1 03n−1×1 03n−1×n−1 (ρ− 1)I3n−1×3n−1

∣∣∣∣∣∣∣∣ . (2)

Applying the row operation R1 → (ρ − 1)R1 − (R2 + R3 + . . . + R4n) on the matrix in (2). Note
that,

(ρ− 1)R1 = ((ρ− 1)(ρ− (4n− 1)), ρ− 1, ρ− 1, . . . , ρ− 1),

and the sum of all rows R2 to R4n is
4n∑
i=2

Ri = (4n− 1, ρ− 1, ρ− 1, ρ− 1, ρ− 1, ρ− 1, . . . , ρ− 1),

which transforms R1 into

R′
1 = ((ρ− 1)(ρ− (4n− 1))− (4n− 1), 0, 0, 0, 0, 0, . . . , 0)

= (ρ(ρ− 4n), 0, 0, 0, 0, 0, . . . , 0) .

Now,

Θ(L(Γepc(Q4n))) =
1

ρ− 1

∣∣∣∣∣∣∣∣
ρ(ρ− 4n) 0 01×n−1 01×3n−1

1 ρ− n 11×n−1 01×3n−1

1n−1×1 1n−1×1 (ρ− 2)In−1×n−1 0n−1×3n−1

13n−1×1 03n−1×1 03n−1×n−1 (ρ− 1)I3n−1×3n−1

∣∣∣∣∣∣∣∣ ,
and it is equivalent to

Θ(L(Γepc(Q4n))) =
ρ(ρ− 4n)

ρ− 1

∣∣∣∣∣∣
ρ− n 11×n−1 01×3n−1

1n−1×1 (ρ− 2)In−1×n−1 0n−1×3n−1

03n−1×1 03n−1×n−1 (ρ− 1)I3n−1×3n−1

∣∣∣∣∣∣ . (3)

Now, perform the row operation on the remaining matrix in (3),
R1 → (ρ− 2)R1 − (R2 +R3 + . . .+Rn) gives

Θ(L(Γepc(Q4n))) =
ρ(ρ− 4n)

(ρ− 1)(ρ− 2)

∣∣∣∣∣∣
(ρ− 2)(ρ− n)− (n− 1) 01×n−1 01×3n−1

1n−1×1 (ρ− 2)In−1×n−1 0n−1×3n−1

03n−1×1 03n−1×n−1 (ρ− 1)I3n−1×3n−1

∣∣∣∣∣∣ .
Consequently,

Θ(L(Γepc(Q4n))) =
ρ(ρ− 4n)((ρ− 2)(ρ− n)− (n− 1))

(ρ− 1)(ρ− 2)
|(ρ− 2)In−1×n−1||(ρ− 1)I3n−1×3n−1|

=
ρ(ρ− 4n)(ρ2 − (n+ 2)ρ+ n+ 1)

(ρ− 1)(ρ− 2)
(ρ− 2)n−1(ρ− 1)3n−1.
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Upon simplifying and rearranging, therefore,

Θ(L(Γepc(Q4n))) =
ρ(ρ− 4n)(ρ− (n+ 1))(ρ− 1)

(ρ− 1)(ρ− 2)
(ρ− 2)n−1(ρ− 1)3n−1

= ρ(ρ− 1)3n−1(ρ− 2)n−2(ρ− (n+ 1))(ρ− 4n).

From (1), the Laplacian spectrum Γepc(Q4n) = {4n, n + 1, 2n−2, 13n−1, 0} for n = pt, p ̸= 2, and
t ∈ N.

4 Conclusions and Recommendations

In conclusion, this paper introduced the enhanced power coprime graph, Γepc(G), as a tool
to understand group structures, generate patterns, and order properties. General presentations
were established for all semi-dihedral groups and prime power cases of dihedral and generalized
quaternion groups. These presentations facilitated a comprehensive analysis of key graph charac-
teristics, including graph invariants, classifications, and Laplacian spectra. In all analyzed cases,
the graphs were consistently classified as connected, planar, and perfect, demonstrating a uniform
structure. The theoretical results were fully consistent with those computed using Maple, con-
firming the accuracy of our approach. This study bridges group properties with graph-theoretic
concepts, contributing to a deeper understanding of finite group structures. These findings could
be expanded by exploring additional characteristics derived from the general presentations or de-
veloping presentations for other group cases. Moreover, these graphs offer potential applications
in computational group theory, network analysis, coding theory, and the exploration of combi-
natorial symmetry in physical and chemical systems, providing valuable directions for further
exploration.
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